聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽聽 首页聽|聽简介聽|聽编委会聽|聽征稿简则聽|聽英文刊聽|聽稿件流程聽|聽致读者聽|聽下载区聽|聽常见问题说明
非线性动态系统的Wiener神经网络辨识法
Identification method for nonlinear dynamic system using Wiener neural network
摘要点击聽聽124聽聽全文点击聽聽43聽聽投稿时间:2008-5-29聽聽最后修改时间:2009-1-5
查看全文聽聽查看/发表评论聽聽下载PDF阅读器
DOI编号聽聽
聽聽2009,26(11):1192-1196
中文关键词聽聽非线性动态系统聽聽辨识聽聽神经网络聽聽Wiener模型
英文关键词聽聽nonlinear dynamic system聽聽identification聽聽neural network聽聽Wiener model
基金项目聽聽国家自然科学基金资助项目(50705039); 中国博士后基金资助项目(20070420358).
学科分类代码聽聽
作者单位E-mail
吴德会九江学院 数字控制技术与应用江西省重点实验室; 清华大学 电力系统国家重点实验室wudehui@tsinghua.edu.cn
中文摘要
聽聽聽聽聽聽提出了一种新的Wiener神经网络结构并将其应用于非线性动态系统辨识问题. 首先, 用Wiener模型对非线性动态系统进行描述, 将其分解成线性动态子环节串接非线性静态增益的形式. 其次, 设计一种新型的神经网络结构, 使网络权值对应于相应的Wiener模型参数;并推导了基于反向传播的网络权值调整方法. 最后, 通过网络迭代训练, 可同时得到线性动态子环节和非线性静态增益的模型参数. 通过一个Wiener模型的数值仿真来验证方法的有效性, 仿真结果表明所提辨识方法切实可行.
英文摘要
聽聽聽聽聽聽A novelWiener neural network structure is presented and applied to nonlinear dynamic system identification. Firstly, the nonlinear dynamic system is described by a Wiener model which consists of a linear dynamic part in cascade with a nonlinear static gain. Secondly, a novel neural network structure is designed, the weights in which are corresponding with the parameters of the Wiener model. Thirdly, backward-propagation methods for the adjustment of weights in the network are discussed. Finally, parameters of the linear dynamic part and the nonlinear static gain in the Wiener model are determined simultaneously by iterative training. A numerical simulation of Wiener model is provided to validate the effectiveness. Simulation results show that the suggested identification schemes are practically feasible.
 
  聽聽聽聽聽聽聽聽聽 您是第353827位访问者  

主办单位:华南理工大学 中国科学院数学与系统科学研究院聽聽聽聽聽 单位地址:广州市天河区五山路381号

服务热线:020-87111464聽聽 传真:020-87111464聽聽 邮编:510640 聽聽Email: aukzllyy@scut.edu.cn
 

聽聽聽聽本系统由北京勤云科技发展有限公司设计